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molecular cell, and the other two are each twice the 
simple cell edge so that  the cell contains 16 molecules. 

The second part of this paper deals with the crystallo- 
graphic variations in the perovskite group and other 
ABO S structure types, presenting them diagrammati- 
cally for orderly consideration. Plotting temperature 
along a third co-ordinate is suggested as an aid in com- 
paring polymorphic transformations in related com- 
pounds and mixed crystals. Such a diagram invites 
prediction of properties as yet unmeasured and may 
serve to indicate fields of special interest for investi- 
gation. 

The writer wishes to express her gratitude especially 
to Philip W. Anderson, W. L. Bond, Alan N. ttolden 
and J. J. Lander for discussions that  were helpful in 
the preparation of this paper and to B. T. Matthias and 
J. P. Remeika for providing the crystals on which the 
work was done. 
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A method is described by which the structure factors of a proposed crystal can be calculated by 
sampling of the proposed unit cell followed by harmonic (Fourier) rather than non-harmonic sumvna- 
tion. It  is suggested that rapid computing devices may be used more advantageously with this than 
with the present methods, and that the advantage would be particularly great for structures with 
many atoms or with non-spherical atoms. The nature of the inherent error is discussed and a method 
for eliminating it is presented; an example of the use of the method is given, with a comparison of 
the results with those obtained by the ordinary method; and strips for 'hypothetical' two-dimen- 
sional carbon, nitrogen and oxygen atoms are given. 

1. Introduction 

The reduction of structure-factor calculation to Fourier- 
series summation would make it possible to perform the 
two principal types of computation in X-ray crystal- 
structure analysis by a single method which is parti- 
cularly suited to such rapid computing devices as the 
electronic Fourier-summation computer X-RAC (Pe- 
pinsky, 1947) and Hollerith or IBM punched-card 
machines (Cox & Jeffrey, 1949; Donohue & Schomaker, 
1949; Grems & Kasper, 1949; Cox, Gross & Jeffrey, 
1949). The purpose of this paper is to show how this 
reduction can be effected, and to point out the nature 

of the inherent error and a procedure by which it can be 
eliminated. 

The Fourier transform of the unit cell of a crystal is 
a continuous function in reciprocal space which con- 
stitutes a complete description of the X-ray scattering 
properties of the unit cell, standing in exactly the same 
relation to the unit cell as the familiar atomic scattering 
function does to a single atom. It  includes a description 
of the scattering properties of the crystal which results 
when the unit cell is repeated on the crystal lattice, for 
the structure factors of the crystal are merely the values 
which the unit-cell transform assumes at the points of 
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the crystal reciprocal lattice. For this reason, as is well 
known, the ordinary calculation of structure factors can 
be replaced by  Fourier transformation of the unit cell. 

What  remains to be shown is how Fourier trans- 
formation can in turn be replaced by the much easier 
process of Fourier summation. I t  is pointed out in §2 
that ,  with a certain qualification to be noted immediately 
below, Fourier transformation can be replaced by the 
process of sampling the unit cell on a lattice (that is, 
producing the array of numbers which are the values 
assumed by the continuous electron-density function of 
the unit cell at  the points of the sampling lattice), and 
then summing the Fourier series which has as coefficients 
the numbers obtained from the sampling; for this 
process will yield the same continuous periodic function 
in reciprocal space as would be produced by putting 
down the Fourier transform of the unit cell over and 
over again with its origin successively at  each of the 
points of the lattice reciprocal to the sampling lattice. 
The qualification to be noted is tha t  some method must 
be found for avoiding the effect of the overlapping which 
arises from the periodicity of the Fourier sum. In § 4 it is 
shown tha t  this effect can, indeed, be rendered harmless 
by starting with a unit cell composed of hypothetical 
atoms, atoms whoso scattering has been made zero 
beyond a certain distance in reciprocal space. The final 
sections are devoted to an actual example of the use of 
the method and to a convenient method for producing 
any required hypothetical atom. 

2. The fundamental relationship 
Let the lattice vectors of a crystal be ax, a~, a a, so tha t  
the lattice points of the crystal are 

n=n~az+n~a2+naa3  (nl,n~.,%integers), 

and let x=x~al+z~a~+x3aa 

be the variable position vector in crystal space. Let 
d(x) be the electron-density function of the proposed 
unit cell. Now let the reciprocal-lattice vectors of the 
crystal be A 1 , A~, A a (defined in terms of the a 's  in the 
usual way), the reciprocal-lattice points be 

N = N 1 A I  +N~A~+N3Aa (N1, N~, Ns integers), 

and the variable position vector in reciprocal space be 

X=X, AI + X~A~+ XaA~. 

Then, as was pointed out in § 1, the Fourier transform 

- fd(x)e-i2,x, x dT (1) D(X) 
J 

of the proposed unit cell takes on, at the crystal re- 
ciprocal-lattice points X = N ,  values D(N) which are 
the Fourier coefficients, or structure factors, of the 
proposed crys ta l  For this reason, the calculation of 
structure factors can be replaced by Fourier trans- 
formation. 

Now let the numbers d(n') be the values assumed by 
the electron-density function d(x) at the points of a 
sampling lattice 

t 1 ! t ! ! ! t ! ! 

n = n z az + n9 a9 + n a aa (nz, ng, n a integers). 

Then the Fourier sum 

(a~ a~a~) • d(n')e -~9"n'.x (2) 
n '  

will yield D(X) repeated in reciprocal space at  each 
point of the lattice 

! ! ! t t t t ! ! 

N = N z A I + N g A ~ + N a A  a (N'I, Ng, N 3integers) 

which is the reciprocal of the sampling lattice n ' .  Fig. 1 
illustrates this relationship schematically for two differ- 
ent sampling lattices n' .  (This relationship follows from 

Direct space Reciprocal space 

j d  (x) 

(a) ~ (x) 

(b) 

• e • • • • • 

Fig.  1. Schemat ic  d i ag ram to i l lus t ra te  the  effect of  sampl ing  
and  Four ie r  s u m m a t i o n .  (a) A func t ion  d(x) and  its Four ie r  
t r ans fo rm D(X).  (b) and  (c) The  func t ion  d(x) sampled  on 
two  different  lat t ices n '  and  the  cor responding  repe t i t ion  of  
D(X) on the  lat t ices N ' .  No te  the  over lapp ing  in (b) and  (c), 
more  severe in the  former.  

the fact, referred to above, tha t  the Fourier coefficients 
of a periodic function are the values sampled from the 
transform of any of its unit cells by the lattice reciprocal 
to its own lattice.) 

3. Overlapping 

Because this fundamental relationship is strictly, as 
distinct from approximately, true, the only errors 
introduced in replacing Fourier transformation by 
sampling and Fourier summation are those due to the 
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overlapping caused by the periodicity of the result. 
The overlapping can be reduced by increasing the 
fineness of the sampling lattice n ' ,  and hence the coarse- 
ness of the repetition lattice N' ,  but this procedure is 
costly because it  rapidly increases the number of terms 
appearing in (2). ~or,  strictly speaking, can this 
procedure entirely avoid overlapping in the crystal- 
structure problem, because the proposed unit cell is 
finite in extent and therefore its transform is infinite in 
extent. Consequently, it would appear to be impossible 
to avoid some slight overlapping, no mat ter  how fine a 
sampling lattice were used. 

4. The method of  hypothetical atoms* 
A way out of the difficulty of overlap can, however, be 
found by making use of the fact tha t  in X-ray analysis 
there is no use in calculating the structure factors of a 
proposed crystal at distances from the origin of re- 
ciprocal space greater than 2/h, for with X-rays of 
wave-length h no structure factors beyond that  limit 
can be observed. I t  is quite proper, therefore, to 
calculate the structure factors of crystals in which the 
atoms have been replaced by hypothetical atoms whose 
scattering factors coincide with those of the corre- 
sponding real atoms out to a distance 2/~ in reciprocal 
space and are zero thereafter. Such crystals will possess 
structure factors which vanish outside the sphere of 
radius 2/h and which are identical with.those of the real 
crystal inside that  sphere; accordingly, the transforms 
of the proposed unit cells of such hypothetical crystals 
take on, at  the reciprocal-lattice points N, values which 
are zero~ for IN] > 2/A, and which are the desired values 
for IN I < 2/A. Consequently, the overlapping can cause 
no errors ff (1) the proposed unit cell is composed only 
of atoms whose transforms are cut off at 2/h, (2) the 
sampling lattice n '  is a sublattice of the crystal lattice n, 
and (3) the repetition lattice N '  is coarse enough to 
prevent overlapping of spheres of radius 2/h. 

The last of these conditions is clearly the same as 
requiring that  the points of the repetition lattice N '  be 
at least 4/h apart, i.e. that  the points of the sampling 
lattice n '  must be not more than ¼h apart. For copper 
radiation, with A= 1.54A., this minimum required fine- 
ness of sampling is 1-54/4-0.385 A. A Fourier summing 
device which can accept terms whose indices run from 
- 3 0  to + 30, say, would therefore be capable, in the 
case of copper radiation, of dealing with unit cells not 
larger than 60 × 0"385- 23A. on an edge. 

* An alternative method is to use atoms with a large 
temperature factor. The disadvantages are (a) tha t  the 
structure factors so calculated cannot be compared directly 
with the observed structure factors, and (b) tha t  the far-out 
structure factors so calculated are so small tha t  they  are 
rendered very uncertain by rounding-off errors. The advantage 
is tha t  the atoms will have no diffraction rings and will 
accordingly be of smaller effective radius than the hypothetical  
atoms, so tha t  sampling each atom will not take so long. 

~f Note tha t  they will not be zero for general points IX[ > 2/h, 
but  only for reciprocal lattice points IN[ > 2/h, Hence condi- 
tion (2) below. 

The method can be used in three dimensions* to 
calculate all structure factors within the limiting sphere, 
or in two dimensions or one dimension to obtain a 
principal plane or principal line of structure factors. 
In the first case the coefficients for the Fourier sum 
will be obtained with the use of the full three-dim ensional 
hypothetical atoms, and in the other two cases with the 
projections of these atoms on a.plane or line. A method 
for calculating the appearance of hypothetical atoms, 
either in three dimensions or in projection, is given in § 6. 

5. Example: lumisterol nitro-iodo-benzoate 
Lumisterol nitro-iodo-benzoate occurs in crystals of 
space group P2~, with 

a--10.55, b=7.63, c--20.57A., /?--93.5 °, 

and with two molecules of CssH4004NI in each unit cell. 
There are some l l50F(h0l) 's ,  all of which are real, 
within the limiting sphere for copper radiation. Of 
these only halt" are independent quantities, because 
F(hO1) = F(hO1). All of these 575 independent structure 
factors have been calculated for a proposed structure 
by the present method, using Beevers-Lipson strips 
and a desk calculator as the Fourier summing device. 

l 2 t~ ' 
I , - J r  0 

Fig. 2. The region for the proposed unit  cell of lumisterol 
nitro-iodo-benzoate. The sampling lattice n',  which divides 
the cell into 30ths along a and 60ths along c, is par t ly  indicated 
by the lighter lines. The value sampled from the proposed 
unit  cell at  the point P will enter the summation with indices 
2, 3. An atom in the position indicated by circle 1 falls par t ly  
outside the region; the portion lost (indicated by the broken 
line) is reinserted by the corresponding part  of the symmetry-  
related circle 1'. Similarly, a tom 2 is totally sampled by  use 
of 2', 2" and 2'". 

The first step was to draw out, on a scale of 4 cm. = 1 A., 
the region to which the proposed unit cell d(x) would be 
confined (see Fig. 2). Because the origin is a centre of 
symmetry for this choice of d(x), D(X) will be real and 
hence easy to compute. 

Next the sampling sublattice n '  was drawn in. Since 
20.57/0.385 - 54 and 10.55/0.385 - 28, the proposed unit 
cell might have been sampled at 28ths along a and 54ths 
along c, and overlapping just avoided. But because the 

* Cochran (private communication) has used an ingenious 
device to overcome the difficulty of sampling in three dimen- 
sions. He calculates the iV(hlclo) structure factors by two- 
dimensional sampling and Fourier summing of the projection, 
not of d(x), but  of d(x) cos 21rloz. 
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Beevers-Lipson strips have the proper ty  of f ie ld ing the 
values of a Fourier  sum only at intervals  of 1/120 or 
1/60 or 1/40 or 1/30 or 1/24 o r . . .  of the cell edge of the 
repeti t ion lattice, and  because it  is desirable to have 
these evaluated points coincide with the reciprocal- 
latt ice points N of the crystal  i tself so tha t  no inter- 
polation is required, n '  was chosen to sample at 30ths 
along a and 60ths along c. This ensured tha t  evaluat ing 
the  Fourier  sum at 30ths by  60ths would yield the  array 
of structure factors directly. 

Projections on a plane of the hypothet ica l  atoms 
corresponding to C, CH, CH2, CH 3, N, 0 and  I were next  
calculated by the method given in § 6 and were prepared 
on strips of t ransparent  mater ia l  as in Fig. 3. Table 1 
gives the figures necessary to construct these strips. 
Then each atom in turn  was pivoted by  means  of a pin 
at  the  point  on the drawing proposed as its centre and 
swung about  so tha t  its contr ibut ion to the  electron 

I 1 ~  I 

c "1 ~1~1~1~1~o I'J' s 4 3 2  1 0 1 
"~HO O O O O  
C : , I ~  U '~ 'S t 'MC' ,~  , r -  

N / , , ,  I i~1~1~1~1,1~ I"~' 6 ' - ~ ' 4 ~ ' 2 ~ '  0 ' 1 ' 
o o o o o o  o 

] - 
o .... I l t l i l l lSl l l l l l l  I I . . . . . . . . . . .  5 4 3 2 1 0 - 1  0 1 o o o o o  o 

CO ",O 

Fig. 3. Strips used for inserting the hypothetical carbon, 
nitrogen and oxygen atoms. The figures give electrons/square 
.~ngstrSm unit multiplied by 10. For a fuller explanation, 
see Fig. 4. 

densi ty  at each point  n '  could be read off and wri t ten 
down next  to tha t  point. When  this had  been done for 
all the  atoms the entries for each point  n '  were added 
together, and the result ing set of numbers  was the array 
of coefficients used in the  Fourier summation.*  (In 
order to reduce rounding-off errors, the strips were made  
to show true electron densi ty mult ipl ied by  10. Midway 
through the summat ion  all figures were divided by  10 
to compensate for this.) Notice that ,  because d(x) has 
a centre of symmet ry  at the origin, the sampling had  to 
be carried out only for the lower hal f  of the region. 

In  carrying out the sampling, several points must  be 
carefully a t tended to if  the numbers  produced are indeed 
to be the sampled values of a function possessing the  full  
s y m m e t r y  of a uni t  cell of the crystal  and capable,when 
repeated on the crystal  lattice, of representing the 
proposed electron distr ibut ion of the crystal:  (a) Each 
atom in the asymmetr ic  unit  must  be completely sampled, 
any  contribution falling outside the lower ha l f  of the 
region being put  in again at the points dictated by  the 
s y m m e t r y  elements. Fig. 2 gives an i l lustrat ion of this. 

* This array of numbers is, in the terminology of the 
(F o-  Fc) synthesis (Cochran, to be published), the ~'¢ synthesis. 
These numbers need only be subtracted from the F o synthesis, 
when that has been calculated, to yield directly the (Fo--F~) 
synthesis. 

Contributions a~ a boundary  of the region will have to 
be entered both  where they  immedia te ly  occur and 
at other symmetry- re la ted  portions of the boundary.  
(b) The values finally employed at the boundaries and 
corners of the region must  be the sampled values 
divided by  the number  of uni t  cells meeting at those 
boundaries or corners ; otherwise, d(x) will not correctly 
represent the crystal  when repeated on the crystal 
lattice. 

Table 1. Table for constructing the hypothetical 
atoms of Fig. 3 

Radial distance in AngstrSm units 
A 

f 

10 e . A .  - 2  C N O 

95 - -  - -  0 . 1 1  

90 --  - -  0.15 
85 - -  - -  0.19 
80 - -  - -  0.22 
75 - -  0.11 0.25 
70 - -  0.16 0.28 
65 - -  0.20 0.31 
60 0.09 0.24 0.34 
55 0.16 0.28 0.36 
50 0.21 0.32 0.39 
45 0.26 0.35 0.42 
40 0.30 0.38 0.44 
35 0.34 0.42 0.47 
30 0.38 0.45 0"51 
25 0.43 0.50 0.55 
20 0.48 0.54 0"58 
15 0.53 0.60 0.64 
10 0.61 0.68 0.72 
9 0.63 0-71 0-74 
8 0.65 0-74 0.76 
7.5 - -  0.75 - -  
7 0-68 - -  0.79 
6.5 - -  0.81 - -  
6 0.72 - -  0.86 
5.5 0.74 0.96 0.90 
4.5 1.07 1.10 1-03 
3.5 1.19 1.18 1.13 
2.5 1.26 1-25 1.20 
1.5 1.34 1.36 1.27 
0.5 1-48 1.41 1.34 

- -  0 . 5  - -  - -  1 - 4 4  

--0.5 - -  - -  1.61 
0.5 1-62 1-75 1-80 
0.5 2.09 1.98 1.97 

for 

For other space groups the above remarks still apply. 
Furthermore,  i t  should be noted tha t  in any  space 
group the actual  sampling need be carried out only 
over the asymmetr ic  uni t  of the pat tern,  the ordinary 
Fourier  expression then  reducing to the well-known 
special form for the space group in question. For any  
space groups in which the uni t  cell does not possess a 
centre of symmet ry  at the  origin, two summations  will 
have to be performed to give the real and imaginary  
parts  of the t ransform, the first using the centrosym- 
metrical  a r ray  of coefficients 

~[d(n) + d ( -  n')], 

and the second the ant i -centrosymmetr ical  a r ray  

l [ d ( n ' ) - d ( -  n')]. 

I t  should also be noted tha t  equation (2) possesses a 
negative exponential ,  whereas the Fourier  expression 
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used for calculating electron-density maps  has a posi- 
t ive exponential .  This fact will necessitate a slight 
al terat ion in the  details of summing in non-centrosym- 
metr ical  cases only. 

Final ly ,  the  Fourier  summat ion  was carried out in the 
ordinary  way. The results of the  summat ion  had  now to 
be mul t ip l ied  b y 21a ~ × a~ I = 2 × (area of a uni t  parallelo- 
gram of the  sampling l a t t i c e )=2  × (area of uni t  cell)/ 
( 60×30) -0 .24067 .  (The factor 2 arose from the 
cus tomary halving of the sum in the course of summa- 
tion.) For  example,  the  uncorrected value for ~'(0, 0) 
was 2881; upon mult ipl icat ion by  0.24067 this became 
693, which m a y  be compared with the  true value for 
F(0,  0) of 696. 

Table  2 lists the F(50/) 's as calculated by  this and  by  
the  usual  method.  The disagreement factor for this  line 
is6%. 

The t imes required for the several operations were as 
follows. Preparat ion of the  sampling lattice: 1 hr. 
Prepara t ion  of the  strips representing hypothet ica l  
a toms:  1 hr. for each type  of atom. (These strips do 
not, of course, have in general to be redone for other 
calculations.) Sampling and  adding to obtain coeffi- 
cients: 15 mln.  per a tom in the asymmetr ic  unit .  Thus 
the  total  inves tment  of t ime before the summat ion  was 
begun was, for the  present example,  about  16 hr. The 
t ime required for the summation,  using Beevers-Lipson 
strips, was about  36 hr., giving a total  of about  52 hr. 
for the  entire process. I t  is es t imated tha t  by  the usual  
method  the  total  t ime required by  the  same person 
would have been about  125 hr. 

6. Calcu lat ion  o f  the appearance  o f  
hypothet ica l  a toms  

In  order to calculate the appearance of a hypothet ical  
atom, a necessary pre l iminary  to the  sampling pro- 
cedure, i t  is first necessary to know the scattering factor, 
or Fourier  t ransform, of the real a tom which it  is to 
replace. I t  m a y  include any  effects of temperature,  
non-sphericity,  etc., which are desired. This transform, 
when te rmina ted  abrupt ly  at the desired distance from 
the  origin, is the  t ransform of the hypothet ical  atom. 
The remaining problem is to effect the  t ransformat ion 
to real space. This can be performed for spherical atoms 
b y  the  well-known forms to which the Fourier trans- 
formation reduces in the  spherically symmetr ic  case 
(James, 1948; Cruickshank, 1949). However, sampling 
and  Fourier  summatio~t provide a more rap id  method  

and one which is not  restricted to spherical atoms. In  
this  case i t  is impossible to ta l ly  to avoid overlapping,  
bu t  i f  the sampling lattice N '  is sufficiently fine (for 
example,  intervals  of 0.1 A. -z) the hypothet ica l  a toms 
will be well separated (10A. for the  figures jus t  given) 
and  overlap will be negligible. The function to be sampled 
is the entire te rmina ted  scattering factor, or the  appro- 
priate plane or line section through the origin, according 
as it is the  three-dimensional  hypothet ical  atom, or its 
projection on a plane or a line, tha t  is desired. I f  the  
atom is spherical, the  Fourier sum need be evaluated 
only along one radial  line. 

6l 
5- 

4- 
A 

"i'. < 3 -  

- - _ 1  

O) 

6~ 

5- 

4-  

f 3 -  

2- 

'1 

0-'1 0"3 0"5 0"7 0"9 1"1 '1"3 (~-'~) 
0"2 0"4 06 O-8 1.0 '1-2 

Fig. 4. (a) Radial section of the projection of a hypothetical 
atom whose scattering factor is that of a carbon atom 
(Viervoll & 0grim, 1949), with a temperature factor 
B=3.5 x 10 -1~, out to 1.3 A. -1 (limit of the reflecting sphere 
for copper radiation) and zero thereafter. The strip for 
carbon (Fig. 3) was prepared from this curve. (b) Solid 
curve: the scattering curve of the atom in (a). Dots: the 
scattering curve obtained from the carbon strip of Fig. 3, 
showing that the errors due to rounding off and to the finite 
extent of that strip were not serious. 

Fig. 4 shows the result  of applying this method in 
two dimensions to the carbon atom. The scattering 
curve was tha t  given by  Viervoll & 0g r im  (1949}, wi th  

Table 2. Comparison of sampling and ordinary methods for P(50I) 

Sampling ~ I-~ ~2~ ~-~ 0 7 
Ordinary ~ 1--5 ~g T2 T 

Sampling 53 39 64 21 ]-6 
Ordinary 53 39 60 20 ~ 
Z= 9 10 11 12 13 14 
Sampling ~ ~/ ~ 5 14 6 
Ordinary ~-~ ~ ~ 8 13 5 

7 4 16 5 20 40 53 44 56 
6 16 6 22 42 53 47 54 

]: 0 1 2 3 4 5 6 7 

15 16 17 18 19 20 21 22 23 
36 16 24 17 23 17 17 5 9 
35 19 25 19 20 18 15 5 10 

25 
24 

8 
3-6 
~J 
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a temperature factor B = 3 . 5  x 10 -IS, terminated at  
2/(1.54 x 10-s) - 1.3A.-*. The sampling was done on a 
square lattice 0" 1A. -x on an edge. I t  will be seen tha t  
the diffraction rings fall to a density less than 0.1 e.A. -2 
at  distances from the centre of the atom greater than  
about 2A. For the lumisterol calculation the hypo- 
thetical atoms were simply not produced beyond tha t  
point. That  this termination introduced no serious error 
may  be seen from Fig. 4(b), in which the scattering 
curve calculated from the hypothetical atom actually 
employed agrees closely with the desired scattering 
curve. 
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is due, to Dr Raymond Pepinsky, at  whose laboratory 

and with whose encouragement the first par t  of this 
work was done, to Mrs D. Crowfoot Hodgkin for her 
interest and many valuable suggestions, and to the 
Rockefeller Foundation for a grant  of research funds. 
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Sur la Convergence et l'Erreur dans les Structures Non-Centrosym~triques 

P~ V. LUZZATI 

Laboratoire Central des Services Chimiques de I'll, tat, 12, Quai Henri IV ,  Paris IV ,  France 

(Refu le 21 juiUet 1950) 

Some conclusions obtained by Cruiekshank are confirmed by a more direct method: (1) The method 
of successive applications of the Fourier transform is convergent for non-centrosymmetric struc- 
tures. (2) Under identical conditions, the error in atomic positions is twice as great for non-centro- 
symmetric as for centrosymmetrie structures. 

Introduction 
L'une des m4thodes le plus eourammont employ4es 
dans la ddtermination des structures cristallines, est 
l 'application r6it6r6e des transformations de Fourier. 
A partir  d 'un ensemble do coordonn4es voisines des 
positions atomiques correctes, on d6termine los angles 
des phases, avec cos angles et los [ Fobserves I on calcule 
une transform4e de Fourier, qui indique des modifica- 
tions des positions atomiques. Avec cos coordonn4es on 
r4p~te la m6me op6ration, et ainsi de suite, jusqu'£ 
obtenir des positions qui ne sent pas modifi4es par la 
transformation de Fourier: & ce point, on consid~re 
qu'on a at te int  la limite de convergence de la m4thode, 
et qu'on a obtenu los coordonn4es d4finitives. 

Pour d4montrer que le processus converge vers les 
coordonn4es correctes, il faut  prouver qu'il existe une 
r4gion autour de chaque atome, ~ l 'int4rieur do laquelle 
les pics des transform4es de Fourier successives se 
d6placent uniform6ment vers la position vraie. 

Dans la plupart  des nombreuses communications 
parues r6cemment, t ra i tant  des erreurs dans los d4ter- 
minations des structures cristallines, on admet  im- 
plicitement cette convergence, en supposant que l'on 
connaisse les modules et les arguments des facteurs de 
structure, aux erreurs exp4rimentales pr~s. Booth 

(1946) propose de tenir compte des modifications Aa 
des angles des phases en introduisant dans los s6ries 
diff4rentielles un terme correetif; Cruickshank (1950), 
en 6talissant une relation entre ce terme et los modi- 
fications des coordonn4es atomiquos, a pu d4montror 
que la m6thode donne une limite de convergence, dans 
le cas des structures non-controsym4triques. 

Nous avons repris la d6monstration d 'une manibre 
plus directe (Cruickshank utilise les s6ries diff6rentielles 
de Booth et des calculs statistiques), et nous avons 
trait4 le cas des structures avec ou sans centre de 
sym4trie. Los deux eas seront trait4s s4par4ment. 

Structures non-centrosym6triques 

Supposons une structure form6e par i atomos; ] F I  et 
a sent les modules et les arguments des facteurs de 
structure correspondant aux positions correctes des 
atomes ri; s est le vecteur de diffusion [ s I = 2sin0/h,  
r e s t  le vectour de position. I F  let  0¢ sent des fonctions 
de s. 

Avec la portion d'espace r6eiproquo contenue dans 
une sphere de rayon IS0[ on pout d4finir une fonction 

p ( r ) = f  I F I c o s [ 2 ~ ( r x s ) - a ] d v  (1) 
Isl<lSol 


